Copied to
clipboard

G = C923C3order 243 = 35

3rd semidirect product of C92 and C3 acting faithfully

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C923C3, C33.24C32, C32.17C33, (C3×C9)⋊5C9, C9⋊C910C3, C9.3(C3×C9), C3.3(C32×C9), C32⋊C9.14C3, C3.1(C9○He3), (C32×C9).11C3, C32.11(C3×C9), (C3×C9).20C32, SmallGroup(243,34)

Series: Derived Chief Lower central Upper central Jennings

C1C3 — C923C3
C1C3C32C3×C9C32×C9 — C923C3
C1C3 — C923C3
C1C3×C9 — C923C3
C1C32C32 — C923C3

Generators and relations for C923C3
 G = < a,b,c | a9=b9=c3=1, ab=ba, cac-1=ab3, bc=cb >

Subgroups: 99 in 69 conjugacy classes, 54 normal (7 characteristic)
C1, C3, C3, C3, C9, C9, C32, C32, C32, C3×C9, C3×C9, C33, C92, C32⋊C9, C9⋊C9, C32×C9, C923C3
Quotients: C1, C3, C9, C32, C3×C9, C33, C32×C9, C9○He3, C923C3

Smallest permutation representation of C923C3
On 81 points
Generators in S81
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)
(1 56 29 80 71 44 17 25 53)(2 57 30 81 72 45 18 26 54)(3 58 31 73 64 37 10 27 46)(4 59 32 74 65 38 11 19 47)(5 60 33 75 66 39 12 20 48)(6 61 34 76 67 40 13 21 49)(7 62 35 77 68 41 14 22 50)(8 63 36 78 69 42 15 23 51)(9 55 28 79 70 43 16 24 52)
(1 7 4)(2 15 75)(3 79 13)(5 18 78)(6 73 16)(8 12 81)(9 76 10)(11 17 14)(19 25 22)(20 72 63)(21 58 70)(23 66 57)(24 61 64)(26 69 60)(27 55 67)(28 40 46)(29 35 32)(30 51 39)(31 43 49)(33 54 42)(34 37 52)(36 48 45)(38 44 41)(47 53 50)(56 62 59)(65 71 68)(74 80 77)

G:=sub<Sym(81)| (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81), (1,56,29,80,71,44,17,25,53)(2,57,30,81,72,45,18,26,54)(3,58,31,73,64,37,10,27,46)(4,59,32,74,65,38,11,19,47)(5,60,33,75,66,39,12,20,48)(6,61,34,76,67,40,13,21,49)(7,62,35,77,68,41,14,22,50)(8,63,36,78,69,42,15,23,51)(9,55,28,79,70,43,16,24,52), (1,7,4)(2,15,75)(3,79,13)(5,18,78)(6,73,16)(8,12,81)(9,76,10)(11,17,14)(19,25,22)(20,72,63)(21,58,70)(23,66,57)(24,61,64)(26,69,60)(27,55,67)(28,40,46)(29,35,32)(30,51,39)(31,43,49)(33,54,42)(34,37,52)(36,48,45)(38,44,41)(47,53,50)(56,62,59)(65,71,68)(74,80,77)>;

G:=Group( (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81), (1,56,29,80,71,44,17,25,53)(2,57,30,81,72,45,18,26,54)(3,58,31,73,64,37,10,27,46)(4,59,32,74,65,38,11,19,47)(5,60,33,75,66,39,12,20,48)(6,61,34,76,67,40,13,21,49)(7,62,35,77,68,41,14,22,50)(8,63,36,78,69,42,15,23,51)(9,55,28,79,70,43,16,24,52), (1,7,4)(2,15,75)(3,79,13)(5,18,78)(6,73,16)(8,12,81)(9,76,10)(11,17,14)(19,25,22)(20,72,63)(21,58,70)(23,66,57)(24,61,64)(26,69,60)(27,55,67)(28,40,46)(29,35,32)(30,51,39)(31,43,49)(33,54,42)(34,37,52)(36,48,45)(38,44,41)(47,53,50)(56,62,59)(65,71,68)(74,80,77) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81)], [(1,56,29,80,71,44,17,25,53),(2,57,30,81,72,45,18,26,54),(3,58,31,73,64,37,10,27,46),(4,59,32,74,65,38,11,19,47),(5,60,33,75,66,39,12,20,48),(6,61,34,76,67,40,13,21,49),(7,62,35,77,68,41,14,22,50),(8,63,36,78,69,42,15,23,51),(9,55,28,79,70,43,16,24,52)], [(1,7,4),(2,15,75),(3,79,13),(5,18,78),(6,73,16),(8,12,81),(9,76,10),(11,17,14),(19,25,22),(20,72,63),(21,58,70),(23,66,57),(24,61,64),(26,69,60),(27,55,67),(28,40,46),(29,35,32),(30,51,39),(31,43,49),(33,54,42),(34,37,52),(36,48,45),(38,44,41),(47,53,50),(56,62,59),(65,71,68),(74,80,77)]])

C923C3 is a maximal subgroup of   C923S3  C924S3  C923C6

99 conjugacy classes

class 1 3A···3H3I···3N9A···9R9S···9CF
order13···33···39···99···9
size11···13···31···13···3

99 irreducible representations

dim1111113
type+
imageC1C3C3C3C3C9C9○He3
kernelC923C3C92C32⋊C9C9⋊C9C32×C9C3×C9C3
# reps1661225418

Matrix representation of C923C3 in GL4(𝔽19) generated by

9000
0660
01131
012150
,
1000
0900
0090
0009
,
7000
0100
0670
013011
G:=sub<GL(4,GF(19))| [9,0,0,0,0,6,1,12,0,6,13,15,0,0,1,0],[1,0,0,0,0,9,0,0,0,0,9,0,0,0,0,9],[7,0,0,0,0,1,6,13,0,0,7,0,0,0,0,11] >;

C923C3 in GAP, Magma, Sage, TeX

C_9^2\rtimes_3C_3
% in TeX

G:=Group("C9^2:3C3");
// GroupNames label

G:=SmallGroup(243,34);
// by ID

G=gap.SmallGroup(243,34);
# by ID

G:=PCGroup([5,-3,3,3,-3,3,405,301,57]);
// Polycyclic

G:=Group<a,b,c|a^9=b^9=c^3=1,a*b=b*a,c*a*c^-1=a*b^3,b*c=c*b>;
// generators/relations

׿
×
𝔽